In this work, we demonstrate that monodispersed gold nanorods (AuNRs) can be obtained in a large-scale and cost-effective way. By using an industrial grade gemini surfactant (P16-8-16), the cost of the synthesis of high-quality AuNRs can be significantly reduced by 90%. The synthesis can be scaled up to over 4 L. The aspect ratio of AuNRs can be well tuned from ∼2.4 to ∼6.3, resulting in a wide tunability of the SPR properties. Systematic studies reveal that P16-8-16 could have a dual function: it can not only act as a capping ligand to stabilize AuNRs but also it can pre-reduce Au(3+) to Au(+) by the unsaturated C[double bond, length as m-dash]C bond. Furthermore, the shape of AuNRs can be tailored from straight nanorods to "dog-bones" by simply varying the concentration of the surfactant. A mechanistic study shows that the shape change can be attributed to the presence of excess bromide ions because of the complex effect between bromide ions and gold ions. This work will not only help to achieve the industrial production of AuNRs, but also promote research into practical applications of various nanomaterials.