Tenascin-C Protects Cancer Stem-like Cells from Immune Surveillance by Arresting T-cell Activation

Cancer Res. 2015 May 15;75(10):2095-108. doi: 10.1158/0008-5472.CAN-14-2346. Epub 2015 Mar 25.

Abstract

Precociously disseminated cancer cells may seed quiescent sites of future metastasis if they can protect themselves from immune surveillance. However, there is little knowledge about how such sites might be achieved. Here, we present evidence that prostate cancer stem-like cells (CSC) can be found in histopathologically negative prostate draining lymph nodes (PDLN) in mice harboring oncogene-driven prostate intraepithelial neoplasia (mPIN). PDLN-derived CSCs were phenotypically and functionally identical to CSC obtained from mPIN lesions, but distinct from CSCs obtained from frank prostate tumors. CSC derived from either PDLN or mPIN used the extracellular matrix protein Tenascin-C (TNC) to inhibit T-cell receptor-dependent T-cell activation, proliferation, and cytokine production. Mechanistically, TNC interacted with α5β1 integrin on the cell surface of T cells, inhibiting reorganization of the actin-based cytoskeleton therein required for proper T-cell activation. CSC from both PDLN and mPIN lesions also expressed CXCR4 and migrated in response to its ligand CXCL12, which was overexpressed in PDLN upon mPIN development. CXCR4 was critical for the development of PDLN-derived CSC, as in vivo administration of CXCR4 inhibitors prevented establishment in PDLN of an immunosuppressive microenvironment. Taken together, our work establishes a pivotal role for TNC in tuning the local immune response to establish equilibrium between disseminated nodal CSC and the immune system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Movement
  • Cell Proliferation
  • Humans
  • Integrin alpha5beta1 / metabolism
  • Lymphatic Metastasis
  • Lymphocyte Activation
  • Male
  • Mice, 129 Strain
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neoplastic Stem Cells / immunology*
  • Prostatic Neoplasms / immunology*
  • Prostatic Neoplasms / pathology
  • Stress Fibers / metabolism
  • T-Lymphocytes / immunology*
  • Tenascin / physiology*
  • Tumor Cells, Cultured
  • Tumor Escape*

Substances

  • Integrin alpha5beta1
  • Tenascin