The aim of this study was to determine whether the improvement of cerebrospinal fluid (CSF) flow dynamics by CSF shunting, can suppress the oligomerization of amyloid β-peptide (Aβ), by measuring the levels of Alzheimer's disease (AD)-related proteins in the CSF before and after lumboperitoneal shunting. Lumbar CSF from 32 patients with idiopathic normal pressure hydrocephalus (iNPH) (samples were obtained before and 1 year after shunting), 15 patients with AD, and 12 normal controls was analyzed for AD-related proteins and APLP1-derived Aβ-like peptides (APL1β) (a surrogate marker for Aβ). We found that before shunting, individuals with iNPH had significantly lower levels of soluble amyloid precursor proteins (sAPP) and Aβ38 compared to patients with AD and normal controls. We divided the patients with iNPH into patients with favorable (improvement ≥ 1 on the modified Rankin Scale) and unfavorable (no improvement on the modified Rankin Scale) outcomes. Compared to the unfavorable outcome group, the favorable outcome group showed significant increases in Aβ38, 40, 42, and phosphorylated-tau levels after shunting. In contrast, there were no significant changes in the levels of APL1β25, 27, and 28 after shunting. After shunting, we observed positive correlations between sAPPα and sAPPβ, Aβ38 and 42, and APL1β25 and 28, with shifts from sAPPβ to sAPPα, from APL1β28 to 25, and from Aβ42 to 38 in all patients with iNPH. Our results suggest that Aβ production remained unchanged by the shunt procedure because the levels of sAPP and APL1β were unchanged. Moreover, the shift of Aβ from oligomer to monomer due to the shift of Aβ42 (easy to aggregate) to Aβ38 (difficult to aggregate), and the improvement of interstitial-fluid flow, could lead to increased Aβ levels in the CSF. Our findings suggest that the shunting procedure can delay intracerebral deposition of Aβ in patients with iNPH.