Objective: There have been found apoptotic changes in brain tissue samples from animals and humans after a traumatic brain injury (TBI). The protein cytokeratin 18 (CK-18), present in epithelial cells, is cleaved by the action of caspases during apoptosis, and the resulting fragments are released into the blood as caspase-cleaved CK (CCCK)-18. Circulating levels of CCCK-18, as biomarker of apoptosis, have been determined in patients with different processes; however, it has not been explored in TBI patients. Thus, the objective of this study was to determine whether there is an association between serum CCCK-18 levels and mortality and whether such levels could be used as a biomarker to predict outcomes in TBI patients.
Methods: A prospective, observational, multicenter study carried out in six Spanish Intensive Care Units. We included patients with severe TBI defined as Glasgow Coma Scale (GCS) lower than 9; and were excluded those patients with Injury Severity Score (ISS) in non-cranial aspects higher than 9. We measured serum CCCK-18 levels at admission. The end-point of the study was 30-day mortality.
Results: Surviving patients (n = 73) showed lower serum CCCK-18 levels (P = 0.003) than non-survivors (n = 27). On ROC analysis, the area under the curve (AUC) for serum CCCK-18 levels as predictor of 30-day mortality was 0.69 (95% CI = 0.59-0.78; P = 0.006). We found in survival analysis that patients with serum CCCK-18 higher than 201 u/L had higher 30-day mortality than patients with lower levels (Hazard ratio = 3.9; 95% CI = 1.81-8.34; P<0.001). Regression analyses showed that serum CCCK-18 levels higher than 201 u/L were associated with 30-day mortality (OR = 8.476; 95% CI = 2.087-34.434; P = 0.003) after controlling for age and GCS.
Conclusions: The novel finding of our study was that serum CCCK-18 levels are associated with 30-day mortality and could be used as a prognostic biomarker in patients with severe TBI.