Novel photopolymerized network films based on a polysiloxane matrix containing varied amounts of polyoxyethylene (P3) or perfluorohexylethyl (F) dangling side chains were investigated. For films containing less than 10 wt % P3 and F, the wettability and elastic modulus were similar to those of the photopolymerized network matrix. However, angle-resolved X-ray photoelectron spectroscopy measurements proved that the surface of films with F dangling chains was highly enriched in fluorine depending on both the amount of P3 and F and their relative ratio in the films. The biological performance of the films was evaluated against a new widespread and invasive marine biofoulant, the serpulid Ficopomatus enigmaticus. The diatom Navicula salinicola was also assayed as a conventional model organism for comparison. Films richer in P3 better resisted the settlement and promoted the release of calcified tubeworms of F. enigmaticus.
Keywords: Ficopomatus enigmaticus; Navicula salinicola; amphiphilic polymer; fouling-release film; marine biofouling; photopolymerized network.