Responses of two scleractinian corals to cobalt pollution and ocean acidification

PLoS One. 2015 Apr 7;10(4):e0122898. doi: 10.1371/journal.pone.0122898. eCollection 2015.

Abstract

The effects of ocean acidification alone or in combination with warming on coral metabolism have been extensively investigated, whereas none of these studies consider that most coral reefs near shore are already impacted by other natural anthropogenic inputs such as metal pollution. It is likely that projected ocean acidification levels will aggravate coral reef health. We first investigated how ocean acidification interacts with one near shore locally abundant metal on the physiology of two major reef-building corals: Stylophora pistillata and Acropora muricata. Two pH levels (pHT 8.02; pCO2 366 μatm and pHT 7.75; pCO2 1140 μatm) and two cobalt concentrations (natural, 0.03 μg L-1 and polluted, 0.2 μg L-1) were tested during five weeks in aquaria. We found that, for both species, cobalt input decreased significantly their growth rates by 28% while it stimulated their photosystem II, with higher values of rETRmax (relative Electron Transport Rate). Elevated pCO2 levels acted differently on the coral rETRmax values and did not affect their growth rates. No consistent interaction was found between pCO2 levels and cobalt concentrations. We also measured in situ the effect of higher cobalt concentrations (1.06 ± 0.16 μg L-1) on A. muricata using benthic chamber experiments. At this elevated concentration, cobalt decreased simultaneously coral growth and photosynthetic rates, indicating that the toxic threshold for this pollutant has been reached for both host cells and zooxanthellae. Our results from both aquaria and in situ experiments, suggest that these coral species are not particularly sensitive to high pCO2 conditions but they are to ecologically relevant cobalt concentrations. Our study reveals that some reefs may be yet subjected to deleterious pollution levels, and even if no interaction between pCO2 levels and cobalt concentration has been found, it is likely that coral metabolism will be weakened if they are subjected to additional threats such as temperature increase, other heavy metals, and eutrophication.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anthozoa / drug effects
  • Anthozoa / physiology*
  • Cobalt / metabolism
  • Cobalt / toxicity*
  • Coral Reefs
  • Hydrogen-Ion Concentration
  • Photosynthesis
  • Seawater / chemistry*
  • Water Pollutants / metabolism
  • Water Pollutants / toxicity*

Substances

  • Water Pollutants
  • Cobalt

Grants and funding

Part of this study was supported by the Laboratoire d’Excellence (LabEX Corail), the Institut de Recherche pour le Développement (IRD) and the Institut National des Sciences de l’Univers (INSU) through the PNEC/CITRIX IBANOE program of Initiative Structurante Ecosphère Continentale et Côtière (EC2CO).