Evaluation of a Novel Tc-99m Labelled Vitamin B12 Derivative for Targeting Escherichia coli and Staphylococcus aureus In Vitro and in an Experimental Foreign-Body Infection Model

Mol Imaging Biol. 2015 Dec;17(6):829-37. doi: 10.1007/s11307-015-0832-x.

Abstract

Purpose: Vitamin B12 (cyanocobalamin, Cbl) is accumulated by rapidly replicating prokaryotic and eukaryotic cells. We investigated the potential of a Tc-99m labelled Cbl derivative ([(99m)Tc]PAMA(4)-Cbl) for targeting infections caused by Escherichia coli and Staphylococcus aureus. In vitro binding assays were followed by biodistribution studies in a mouse model of foreign body infection.

Procedures: E. coli (ATCC 25922) and S. aureus (ATCC 43335) were used as test strains. [(57)Co]Cbl, [(67)Ga]citrate and [(99m)Tc]DTPA served as reference compounds. The in vitro competitive binding of [(57)Co]Cbl or [(99m)Tc]PAMA(4)-Cbl, and unlabeled Cbl, to viable or killed bacteria, was evaluated at 37 and 4 °C. A cage mouse model of infection was used for biodistribution of intravenous [(57)Co]Cbl and [(99m)Tc]PAMA(4)-Cbl in cage and dissected tissues of infected and non-infected mice.

Results: Maximum binding (mean ± SD) of [(57)Co]Cbl to viable E. coli was 81.7 ± 2.6 % and to S. aureus 34.0 ± 6.7 %, at 37 °C; no binding occurred to heat-killed bacteria. Binding to both test strains was displaced by 100- to 1000-fold excess of unlabeled Cbl. The in vitro binding of [(99m)Tc]PAMA(4)-Cbl was 100-fold and 3-fold lower than the one of [(57)Co]Cbl for E. coli and S. aureus, respectively. In vivo, [(99m)Tc]PAMA(4)-Cbl showed peak percentage of injected dose (% ID) values between 1.33 and 2.3, at 30 min post-injection (p.i.). Significantly higher retention occurred in cage fluids infected with S. aureus at 4 h and with E. coli at 8 h p.i. than in non-infected animals. Accumulation into infected cages was also higher than the one of [(99m)Tc]DTPA, which showed similar biodistribution in infected and sterile mice. [(57)Co]Cbl gradually accumulated in cages with peaks % ID between 3.58 and 4.83 % achieved from 24 to 48 h. Discrimination for infection occurred only in E. coli-infected mice, at 72 h p.i. [(67)Ga]citrate, which showed a gradual accumulation into cage fluids during 12 h, was discriminative for infection from 48 to 72 h p.i. (P < 0.05).

Conclusion: Cbl displayed rapid and specific in vitro binding to test strains. [(99m)Tc]PAMA(4)-Cbl was rapidly cleared from most tissues and discriminated between sterile and infected cages, being a promising candidate for imaging infections in humans.

Keywords: 99mTc; Escherichia coli; Infection imaging; Staphylococcus aureus; Vitamin B12.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Colony Count, Microbial
  • Drug Delivery Systems*
  • Escherichia coli / drug effects*
  • Foreign-Body Reaction / microbiology*
  • In Vitro Techniques
  • Mice
  • Mice, Inbred C57BL
  • Staphylococcus aureus / drug effects*
  • Technetium / chemistry*
  • Technetium / pharmacokinetics
  • Vitamin B 12 / chemistry
  • Vitamin B 12 / pharmacokinetics
  • Vitamin B 12 / pharmacology*

Substances

  • Technetium
  • Vitamin B 12