In a world of limited resources, scarcity and rivalry are central challenges for decision makers-animals foraging for food, corporations seeking maximal profits, and athletes training to win, all strive against others competing for the same goals. In this article, we establish the role of competitive pressures for the facilitation of optimal decision making in simple sequential binary choice tasks. In two experiments, competition was introduced with a computerized opponent whose choice behavior reinforced one of two strategies: If the opponent probabilistically imitated participant choices, probability matching was optimal; if the opponent was indifferent, probability maximizing was optimal. We observed accurate asymptotic strategy use in both conditions irrespective of the provision of outcome probabilities, suggesting that participants were sensitive to the differences in opponent behavior. An analysis of reinforcement learning models established that computational conceptualizations of opponent behavior are critical to account for the observed divergence in strategy adoption. Our results provide a novel appraisal of probability matching and show how this individually 'irrational' choice phenomenon can be socially adaptive under competition.
Keywords: Cognitive models; Competition; Decision making; Probability matching; Reinforcement learning.
Copyright © 2015 Elsevier Inc. All rights reserved.