Human supraphysiological gestational weight gain and fetoplacental vascular dysfunction

Int J Obes (Lond). 2015 Aug;39(8):1264-73. doi: 10.1038/ijo.2015.57. Epub 2015 Apr 14.

Abstract

Objective: Human foetal development and growth in an environment of maternal obesity associates with high risk of cardiovascular disease and adverse neonatal outcome. We studied whether supraphysiological gestational weight gain results in human fetoplacental endothelial dysfunction and altered fetoplacental vascular reactivity.

Methods: Primary cultures of human umbilical vein endothelial cells (HUVECs) and umbilical vein rings were obtained from pregnant women (112 total of patients recruited, 7 patients dropped out) exhibiting prepregnancy normal weight that ended with a physiological (pGWG (n=67), total weight gain 11.5-16 kg, rates of weight gain ≤0.42 kg per week) or supraphysiological (spGWG (n=38), total weight gain >16 kg, rates of weight gain >0.42 kg per week) gestational weight gain (reference values from US Institute of Medicine guidelines). Vascular reactivity to insulin (0.1-1000 nmol l(-1), 5 min) in KCl-preconstricted vein rings was measured using a wire myograph. Protein levels of human equilibrative nucleoside transporter 1 (hENT1), total and Ser(1177)- or Thr(495)-phosphorylated endothelial nitric oxide synthase (eNOS) were detected by western blot or immunofluorescence, and adenosine transport (0-250 μmol l(-1) adenosine, 2 μCi ml(-1) [(3)H]adenosine, 20 s, 25 °C) was measured in the presence or absence of 1 μmol l(-1) nitrobenzylthioinosine (hENT1 inhibitor) or 10 μmol l(-1) chlorpromazine (CPZ, endocytosis inhibitor) in HUVECs.

Results: spGWG associates with reduced NOS activity-dependent dilation of vein rings (P=0.001), lower eNOS expression and higher Thr(495) (P=0.044), but unaltered Ser(1177)eNOS phosphorylation. hENT1-adenosine maximal transport activity was reduced (P=0.041), but the expression was increased (P=0.001) in HUVECs from this group. CPZ increased hENT1-adenosine transport (P=0.040) and hENT1 plasma membrane accumulation only in cells from pGWG.

Conclusion: spGWG in women with a normal prepregnancy weight causes lower fetoplacental vascular reactivity owing to the downregulation of eNOS activity and adenosine transport in HUVECs. Maternal spGWG is a detrimental condition for human fetoplacental endothelial function and reducing these alterations could result in a better neonate outcome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine / metabolism*
  • Adult
  • Biological Transport
  • Chile
  • Endothelium, Vascular / metabolism*
  • Female
  • Humans
  • Infant, Newborn
  • Nitric Oxide / metabolism*
  • Obesity / complications
  • Obesity / physiopathology*
  • Placenta / blood supply*
  • Placental Circulation
  • Pregnancy
  • Pregnant Women
  • Prenatal Exposure Delayed Effects / physiopathology*
  • Signal Transduction
  • Umbilical Veins / cytology
  • Weight Gain*

Substances

  • Nitric Oxide
  • Adenosine