Heterorotaxanes have been emerging as an important class of mechanically interlocked molecules and have attracted much attention in recent years. Driven by the distinguishable host-guest interactions between crown ether macrocycles and ammonium with different sizes, a novel hetero[4]rotaxane was successfully prepared by employing the combination of copper-catalyzed "click" reaction and P(n-Bu)3-catalyzed esterification reaction as stoppering reactions. The hetero[4]rotaxane contains an interlocked species in which a dibenzo[24]crown-8 ring threaded by a dibenzylammonium-containing component with two benzo[21]crown-7 macrocycles at both ends to act as stoppers, and each of the two benzo[21]crown-7 rings is also threaded with a benzylalkylammonium unit to form the second interlocked species. The hetero[4]rotaxane was prepared through two different stepwise synthetic routes, and the complicated chemical structure of the hetero[4]rotaxane was well-characterized by (1)H NMR spectroscopy and high-resolution electrospray ionization (HR-ESI) mass spectrometry. The investigation shows that the construction of complicated topological heterorotaxane can be achieved via distinct approaches with high efficiencies, which may provide a foundation for the construction of more sophisticated heterorotaxane systems or functional supermolecules.