Gradual loss of tissue function (or homeostasis) is a natural process of aging and is believed to cause many age-associated diseases. In human epidemiology studies, the low-grade and chronic systemic inflammation in elderly has been correlated with the development of aging related pathologies. Although it is suspected that tissue decline is related to systemic inflammation, the cause and consequence of these aging phenomena are poorly understood. By studying the Drosophila fat body and gut, we have uncovered a mechanism by which lamin-B loss in the fat body upon aging induces age-associated systemic inflammation. This chronic inflammation results in the repression of gut local immune response, which in turn leads to the over-proliferation and mis-differentiation of the intestinal stem cells, thereby resulting in gut hyperplasia. Here we discuss the implications and remaining questions in light of our published findings and new observations.
Keywords: aging; fat body; gut hyperplasia; heterochromatin; inflammation; lamin-B; lamin-associated chromatin domains (LADs); tissue homeostasis.