Genetic and structural analysis of the essential fission yeast RNA polymerase II CTD phosphatase Fcp1

RNA. 2015 Jun;21(6):1135-46. doi: 10.1261/rna.050286.115. Epub 2015 Apr 16.

Abstract

Protein phosphatases regulate mRNA synthesis and processing by remodeling the carboxy-terminal domain (CTD) of RNA polymerase II (Pol2) to dynamically inscribe a Pol2 CTD code. Fission yeast Fcp1 (SpFcp1) is an essential 723-amino acid CTD phosphatase that preferentially hydrolyzes Ser2-PO4 of the YS(2)PTSPS repeat. The SpFcp1 catalytic domain (aa 140-580) is composed of a DxDxT acyl-phosphatase module (FCPH) and a BRCT module. Here we conducted a genetic analysis of SpFcp1, which shows that (i) phosphatase catalytic activity is required for vegetative growth of fission yeast; (ii) the flanking amino-terminal domain (aa 1-139) and its putative metal-binding motif C(99)H(101)Cys(109)C(112) are essential; (iii) the carboxy-terminal domain (aa 581-723) is dispensable; (iv) a structurally disordered internal segment of the FCPH domain (aa 330-393) is dispensable; (v) lethal SpFcp1 mutations R271A and R299A are rescued by shortening the Pol2 CTD repeat array; and (vi) CTD Ser2-PO4 is not the only essential target of SpFcp1 in vivo. Recent studies highlight a second CTD code involving threonine phosphorylation of a repeat motif in transcription elongation factor Spt5. We find that Fcp1 can dephosphorylate Thr1-PO4 of the fission yeast Spt5 CTD nonamer repeat T(1)PAWNSGSK. We identify Arg271 as a governor of Pol2 versus Spt5 CTD substrate preference. Our findings implicate Fcp1 as a versatile sculptor of both the Pol2 and Spt5 CTD codes. Finally, we report a new 1.45 Å crystal structure of SpFcp1 with Mg(2+) and AlF3 that mimics an associative phosphorane transition state of the enzyme-aspartyl-phosphate hydrolysis reaction.

Keywords: CTD code; Spt5; Ssu72.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Motifs
  • Catalytic Domain
  • Crystallography, X-Ray
  • Genes, Essential
  • Models, Molecular
  • Mutation
  • Phosphoprotein Phosphatases / chemistry
  • Phosphoprotein Phosphatases / genetics*
  • Phosphoprotein Phosphatases / metabolism*
  • Phosphorylation
  • Phylogeny
  • Protein Structure, Secondary
  • Schizosaccharomyces / chemistry
  • Schizosaccharomyces / genetics
  • Schizosaccharomyces / growth & development*
  • Schizosaccharomyces / metabolism
  • Schizosaccharomyces pombe Proteins / chemistry
  • Schizosaccharomyces pombe Proteins / genetics*
  • Schizosaccharomyces pombe Proteins / metabolism*
  • Substrate Specificity
  • Transcriptional Elongation Factors / metabolism

Substances

  • Schizosaccharomyces pombe Proteins
  • Spt5 protein, S pombe
  • Transcriptional Elongation Factors
  • Fcp1 protein, S pombe
  • Phosphoprotein Phosphatases