Background: Breast neoplasms include different histopathological entities, varying from benign tumors to highly aggressive cancers. Despite the key role of imaging, traditional histology is still required for a definitive diagnosis. Confocal Laser Endomicroscopy (CLE) is a new technique, which enables to obtain histopathological images in vivo, currently used in the diagnosis of gastrointestinal diseases. This is a single-center pilot feasibility study; the main aim is to describe the basic morphological patterns of Confocal Laser Endomicroscopy in normal breast tissue besides benign and malignant lesions.
Methods: Thirteen female patients (mean age 52.7, range from 22 to 86) who underwent surgical resection for a palpable breast nodule were enrolled. CLE was performed soon after resection with the Cellvizio® Endomicroscopy System (Mauna Kea Technologies, Paris, France), by using a Coloflex UHD-type probe; intravenous fluorescein was used as contrast-enhancing agent. The surgical specimen was cut along the main axis; dynamic images were obtained and recorded using a hand-held probe directly applied both to the internal part of the lesion and to several areas of surrounding normal tissue. Each specimen was then sent for definitive histologic examination.
Results: Histopathology revealed a benign lesion in six patients (46%), while a breast cancer was diagnosed in seven women (54%). Confocal laser endomicroscopy showed some peculiar morphological patterns. Normal breast tissue was characterized by a honeycomb appearance with regular, dark, round or hexagonal glandular lobules on a bright stroma background; tubular structures, representing ducts or blood vessels, were also visible in some frames. Benign lesions were characterized by a well-demarcated "slit-like" structure or by lobular structures in abundant bright stroma. Finally, breast cancer was characterized by a complete architectural subversion: ductal carcinoma was characterized by ill-defined structures, with dark borders and irregular ductal shape, formingribbons, tubules or nests; mucinous carcinoma showed smaller cells organized in clusters, floating in an amorphous extracellular matrix.
Conclusions: This is the first pilot study to investigate the potential role of confocal laser imaging as a diagnostic tool in breast diseases. Further studies are required to validate these results and establish the clinical impact of this technique.