Introduction: The purpose of this study was to re-evaluate the findings of a smaller cohort study on the functional definition and characteristics of acute traumatic coagulopathy (ATC). We also aimed to identify the threshold values for the most accurate identification of ATC and prediction of massive transfusion (MT) using rotational thromboelastometry (ROTEM) assays.
Methods: In this prospective international multicentre cohort study, adult trauma patients who met the local criteria for full trauma team activation from four major trauma centres were included. Blood was collected on arrival to the emergency department and analyzed with laboratory international normalized ratio (INR), fibrinogen concentration and two ROTEM assays (EXTEM and FIBTEM). ATC was defined as laboratory INR >1.2. Transfusion requirements of ≥10 units of packed red blood cells within 24 hours were defined as MT. Performance of the tests were evaluated by receiver operating characteristic curves, and calculation of area under the curve (AUC). Optimal cutoff points were estimated based on Youden index.
Results: In total, 808 patients were included in the study. Among the ROTEM parameters, the largest AUCs were found for the clot amplitude (CA) 5 value in both the EXTEM and FIBTEM assays. EXTEM CA5 threshold value of ≤37 mm had a detection rate of 66.3% for ATC. An EXTEM CA5 threshold value of ≤40 mm predicted MT in 72.7%. FIBTEM CA5 threshold value of ≤8 mm detected ATC in 67.5%, and a FIBTEM CA5 threshold value ≤9 mm predicted MT in 77.5%. Fibrinogen concentration ≤1.6 g/L detected ATC in 73.6% and a fibrinogen concentration ≤1.90 g/L predicted MT in 77.8%. Patients with either an EXTEM or FIBTEM CA5 below the optimum detection threshold for ATC received significantly more packed red blood cells and plasma.
Conclusions: This study confirms previous findings of ROTEM CA5 as a valid marker for ATC and predictor for MT. With optimum threshold for EXTEM CA5 ≤ 40 mm and FIBTEM CA5 ≤ 9 mm, sensitivity is 72.7% and 77.5% respectively. Future investigations should evaluate the role of repeated viscoelastic testing in guiding haemostatic resuscitation in trauma.