Background: Rumen flukes parasitize the rumen and reticulum of ruminants, causing paramphistomiasis. Over the years, there has been considerable debate as to whether Paramphistomum leydeni and Paramphistomum cervi are the same or distant species.
Methods: In the present study, the complete mitochondrial (mt) genome of P. leydeni was amplified using PCR-based sequencing and compared with that of P. cervi. The second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA (rDNA) of P. leydeni specimens (n = 6) and P. cervi specimens (n = 8) was amplified and then sequenced. Phylogenetic relationship of the concatenated amino acid sequence data for 12 protein-coding genes of the two rumen flukes and selected members of Trematoda was evaluated using Bayesian inference (BI).
Results: The complete mt genome of P. leydeni was 14,050 bp in size. Significant nucleotide difference between the P. leydeni mt genome and that of P. cervi (14.7%) was observed. For genetic divergence in ITS-2, sequence difference between P. leydeni and P. cervi was 3.1%, while no sequence variation was detected within each of them. Phylogenetic analysis indicated that P. leydeni and P. cervi are closely-related but distinct rumen flukes.
Conclusions: Results of the present study support the proposal that P. leydeni and P. cervi represent two distinct valid species. The mt genome sequences of P. leydeni provide plentiful resources of mitochondrial markers, which can be combined with nuclear markers, for further comparative studies of the biology of P. leydeni and its congeners from China and other countries.