Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely associated with cisplatin-induced ototoxicity. Although much attention has been directed at identifying ways to protect the inner ear from cisplatin-induced damage, the precise underlying mechanisms have not yet been elucidated. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of cellular energy metabolism and homeostasis. NAD(+) acts as a cofactor for various enzymes including sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), and therefore, maintaining adequate NAD(+) levels has therapeutic benefits because of its effect on NAD(+)-dependent enzymes. Recent studies demonstrated that disturbance in intracellular NAD(+) levels is critically involved in cisplatin-induced cochlear damage associated with oxidative stress, DNA damage, and inflammatory responses. In this review, we describe the importance of NAD(+) in cisplatin-induced ototoxicity and discuss potential strategies for the prevention or treatment of cisplatin-induced ototoxicity with a particular focus on NAD(+)-dependent cellular pathways.
Copyright © 2015 Elsevier B.V. All rights reserved.