Upregulation of miR-572 transcriptionally suppresses SOCS1 and p21 and contributes to human ovarian cancer progression

Oncotarget. 2015 Jun 20;6(17):15180-93. doi: 10.18632/oncotarget.3737.

Abstract

Ovarian cancer is a gynecological malignancy with high mortality rates worldwide and novel diagnostic and prognostic markers and therapeutic targets are urgently required. The suppressor of cytokine signaling 1 (SOCS1) and cyclin-dependent kinase inhibitor 1A (p21(KIP)) are known to regulate tumor cell proliferation. However, the mechanisms that regulate these genes have not yet been completely elucidated. In the present study, analysis of a published microarray-based high-throughput assessment (NCBI/E-MTAB-1067) and real-time PCR demonstrated that miR-572 was upregulated in human ovarian cancer tissues and cell lines. Kaplan-Meir analysis indicated that high level expression of miR-572 was associated with poorer overall survival. Ectopic miR-572 promoted ovarian cancer cell proliferation and cell cycle progression in vitro and tumorigenicity in vivo. SOCS1 and p21 were identified as direct targets of miR-572 and suppression of SOCS1 or p21 reversed the inhibiting-function of miR-572-silenced cell on proliferation and tumorigenicity in ovarian cancer cells. Additionally, the expression of miR-572 correlated inversely with the protein expression levels of SOCS1, p21 and positively with Cyclin D1 in ovarian carcinoma specimens. This study demonstrates that miR-572 post-transcriptionally regulates SOCS1 and p21 and may play an important role in ovarian cancer progression; miR-572 may represent a potential therapeutic target for ovarian cancer therapy.

Keywords: SOCS1; miR-572; ovarian cancer; p21; proliferation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3' Untranslated Regions / genetics
  • Animals
  • Cell Cycle / genetics
  • Cell Line, Tumor
  • Cell Proliferation / genetics
  • Cyclin D1 / biosynthesis*
  • Cyclin-Dependent Kinase Inhibitor p21 / genetics*
  • Disease Progression
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / biosynthesis
  • MicroRNAs / genetics*
  • Ovarian Neoplasms / genetics
  • Ovarian Neoplasms / pathology*
  • RNA Interference
  • RNA, Small Interfering
  • Suppressor of Cytokine Signaling 1 Protein
  • Suppressor of Cytokine Signaling Proteins / genetics*

Substances

  • 3' Untranslated Regions
  • CCND1 protein, human
  • CDKN1A protein, human
  • Cyclin-Dependent Kinase Inhibitor p21
  • MIRN-572 microRNA, human
  • MicroRNAs
  • RNA, Small Interfering
  • SOCS1 protein, human
  • Suppressor of Cytokine Signaling 1 Protein
  • Suppressor of Cytokine Signaling Proteins
  • Cyclin D1