Regulated delivery of molecular cargo to invasive tumour-derived microvesicles

Nat Commun. 2015 Apr 21:6:6919. doi: 10.1038/ncomms7919.

Abstract

Cells release multiple, distinct forms of extracellular vesicles including structures known as microvesicles, which are known to alter the extracellular environment. Despite growing understanding of microvesicle biogenesis, function and contents, mechanisms regulating cargo delivery and enrichment remain largely unknown. Here we demonstrate that in amoeboid-like invasive tumour cell lines, the v-SNARE, VAMP3, regulates delivery of microvesicle cargo such as the membrane-type 1 matrix metalloprotease (MT1-MMP) to shedding microvesicles. MT1-MMP delivery to nascent microvesicles depends on the association of VAMP3 with the tetraspanin CD9 and facilitates the maintenance of amoeboid cell invasion. VAMP3-shRNA expression depletes shed vesicles of MT1-MMP and decreases cell invasiveness when embedded in cross-linked collagen matrices. Finally, we describe functionally similar microvesicles isolated from bodily fluids of ovarian cancer patients. Together these studies demonstrate the importance of microvesicle cargo sorting in matrix degradation and disease progression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Cell Line, Tumor
  • Fluorescent Dyes
  • Gene Expression Regulation, Neoplastic / physiology*
  • Humans
  • Melanoma
  • Neoplasm Invasiveness*
  • Neoplasms / blood supply*
  • Neovascularization, Pathologic / metabolism*
  • Protein Transport
  • Vesicle-Associated Membrane Protein 3 / genetics
  • Vesicle-Associated Membrane Protein 3 / metabolism

Substances

  • Fluorescent Dyes
  • VAMP3 protein, human
  • Vesicle-Associated Membrane Protein 3