Objective: To explore the effect of miR-20b on apoptosis, differentiation, the BMP signaling pathway and mitochondrial function in the P19 cell model of cardiac differentiation in vitro.
Methods: A miR-20b over-expression vector, a miR-20b silencing vector and their corresponding empty vectors were constructed and transfected into P19 cells, separately. Stably miR-20b overexpressing and silenced P19 cell lines were successfully selected by blasticidin and puromycin, separately. The cells were induced to undergo apoptosis in FBS-free-α-MEM. The induced cells were examined by flow cytometry and measurement of their caspase-3 activities. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate the relative expression of marker genes of cardiomyocytes during differentiation, such as cTnT, GATA4 and ANP. QRT-PCR was also used to detect the mitochondrial DNA (mtDNA) copy number. We investigated the cellular ATP production using a luciferase-based luminescence assay. The reactive oxygen species (ROS) was determined by DCFDA (2', 7'-Dichlorofluorescein diacetate) and the mitochondrial membrane potential (MMP) was elucidated by a JC-1 fluorescent probe, both using fluorescence microscopy and flow cytometer. The expression of BMP signaling pathway-related proteins were analyzed by Western blotting.
Results: Stably miR-20b overexpressing and silenced P19 cell lines were successfully obtained. MiR-20b overexpression increased apoptosis and promoted differentiation in P19 cells by promoting the activation of the BMP signaling pathway. In addition, miR-20b overexpression induced mitochondrial impairment in P19 cells during differentiation, which was characterized by lower MMP, raised ATP synthesis and increased ROS levels. The effects of miR-20b silencing were the exact opposite to those of overexpression.
Conclusion: Collectively, these results suggested that miR-20b was very important in apoptosis, differentiation and mitochondrial function of P19 cells. MiR-20b may represent a new therapeutic target for congenital heart diseases and provide new insights into the mechanisms of cardiac diseases.