Objectives: To evaluate the feasibility and effectiveness of dried blood spots (DBS) use for viral load (VL) monitoring, describing patient outcomes and programmatic challenges that are relevant for DBS implementation in sub-Saharan Africa.
Methods: We recruited adult antiretroviral therapy (ART) patients from five district hospitals in Malawi. Eligibility reflected anticipated Ministry of Health VL monitoring criteria. Testing was conducted at a central laboratory. Virological failure was defined as >5000 copies/ml. Primary outcomes were program feasibility (timely result availability and patient receipt) and effectiveness (second-line therapy initiation).
Results: We enrolled 1,498 participants; 5.9% were failing at baseline. Median time from enrollment to receipt of results was 42 days; 79.6% of participants received results within 3 months. Among participants with confirmed elevated VL, 92.6% initiated second-line therapy; 90.7% were switched within 365 days of VL testing. Nearly one-third (30.8%) of participants with elevated baseline VL had suppressed (<5,000 copies/ml) on confirmatory testing. Median period between enrollment and specimen testing was 23 days. Adjusting for relevant covariates, participants on ART >4 years were more likely to be failing than participants on therapy 1-4 years (RR 1.7, 95% CI 1.0-2.8); older participants were less likely to be failing (RR 0.95, 95% CI 0.92-0.98). There was no difference in likelihood of failure based on clinical symptoms (RR 1.17, 95% CI 0.65-2.11).
Conclusions: DBS for VL monitoring is feasible and effective in real-world clinical settings. Centralized DBS testing may increase access to VL monitoring in remote settings. Programmatic outcomes are encouraging, especially proportion of eligible participants switched to second-line therapy.