A synthetic gene coding for human interleukin 4 (IL-4) was cloned and expressed in Saccharomyces cerevisiae (baker's yeast) as a C-terminal fusion protein with the yeast prepro alpha-mating factor sequence, resulting in secretion of mature IL-4 into the culture medium (0.6-0.8 micrograms/ml). A protocol was developed for purification of this protein. Crude cell-free conditioned medium was passed over a concanavalin A-Sepharose affinity column; bound proteins were eluted and further purified by S-Sepharose Fast Flow cation exchange and C18 reverse-phase h.p.l.c. Highly purified IL-4 was obtained by this method (0.3-0.4 mg per litre of culture) with a recovery of 51%. Thermospray liquid chromatography-mass spectrometry showed the C-terminal N-glycosylation site to be largely unmodified, and also showed that the N-terminus of the purified recombinant IL-4 (rIL-4) was authentic. Thiol titration revealed no free cysteine residues, implying that there are three disulphide groups, the positions of which remain to be determined. We have characterized the biological activities of the purified rIL-4. This material is active in B-cell co-stimulator assays, T-cell proliferation assays and in the induction of cell-surface expression of CD23 (the low-affinity receptor for IgE) on tonsillar B-cells. Half-maximal biological activity of the rIL-4 was achieved at a concentration of 120 pM. We have radioiodinated rIL-4 without loss of biological activity and performed equilibrium binding studies on Raji cells, a human B-cell line. The 125I-rIL-4 bound specifically to a single class of binding studies on Raji cells, a human B-cell line. The 125I-rIL-4 bound specifically to a single class of binding site with high affinity (Kd = 100 pM) and revealed 1100 receptors per cell. Receptor-ligand cross-linking studies demonstrated a single cell-surface receptor with an apparent molecular mass of 124 kDa. Two monoclonal antibodies have been raised to the human rIL-4, one of which blocks both the biological activity of rIL-4 and binding to its receptor.