Strategies to prevent the emergence of drug resistance will increase the effectiveness of chemotherapy treatment and prolong survival of women with ovarian cancer. The aim of our study is to determine the effects of NSC23925 on preventing the development of paclitaxel resistance in ovarian cancer both in cultured cells in vitro and in mouse xenograft models in vivo, and to further elucidate these underlying mechanisms. We first developed a paclitaxel-resistant ovarian cancer cell line, and demonstrated that NSC23925 could prevent the introduction of paclitaxel resistance by specifically inhibiting the overexpression of P-glycoprotein (Pgp) in vitro. The paclitaxel-resistant ovarian cancer cells were then established in a mouse model by continuous paclitaxel treatment in combination with or without NSC23925 administration in the mice. The majority of mice continuously treated with paclitaxel alone eventually developed paclitaxel resistance with overexpression of Pgp and antiapoptotic proteins, whereas mice remained sensitivity to paclitaxel and displayed lower expression levels of Pgp and antiapoptotic proteins after administered continuously with combination of paclitaxel-NSC23925. Paclitaxel-NSC23925-treated mice experienced significantly longer overall survival time than paclitaxel-treated mice. Furthermore, the combination of paclitaxel and NSC23925 therapy did not induce obvious toxicity as measured by mice body weight changes, blood cell counts and histology of internal organs. Collectively, our observations provide evidence that NSC23925 in combination with paclitaxel may prevent the onset of Pgp or antiapoptotic-mediated paclitaxel resistance, and improve the long-term clinical outcome in patients with ovarian cancer.
Keywords: NSC23925; Pgp; apoptosis; ovarian cancer; paclitaxel resistance.
© 2015 UICC.