Distortion of primary cilium formation is increasingly recognized as a key event in many human pathologies. One of the underlying mechanisms involves aberrant activation of the lipogenic transcription factor sterol regulatory element-binding protein 1c (SREBP1c), as observed in cancer cells. To gain more insight into the molecular pathways by which SREBP1c suppresses primary ciliogenesis, we searched for overlap between known ciliogenesis regulators and targets of SREBP1. One of the candidate genes that was consistently up-regulated in cellular models of SREBP1c-induced cilium repression was phospholipase A2 group III (PLA2G3), a phospholipase that hydrolyzes the sn-2 position of glycerophospholipids. Use of RNA interference and a chemical inhibitor of PLA2G3 rescued SREBP1c-induced cilium repression. Cilium repression by SREBP1c and PLA2G3 involved alterations in endosomal recycling and vesicular transport toward the cilium, as revealed by aberrant transferrin and Rab11 localization, and was largely mediated by an increase in lysophosphatidylcholine and lysophosphatidylethanolamine levels. Together these findings indicate that aberrant activation of SREBP1c suppresses primary ciliogenesis by PLA2G3-mediated distortion of vesicular trafficking and suggest that PLA2G3 is a novel potential target to normalize ciliogenesis in SREBP1c-overexpressing cells, including cancer cells.
© 2015 Gijs et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).