Background: Pain intensity clamping uses the REsponse-Dependent Stimulation (REDSTIM) methodology to automatically adjust stimulus intensity to maintain a desired pain rating set-point which is continuously monitored from a subject's real-time pain ratings. REDSTIM blinds subjects regarding the pain intensity set-point, supporting its use for assessing intervention efficacy. By maintaining the pain intensity at a constant level, a potential decrease in pain sensitivity can be detected by an increase in thermode temperature (unknown to the subject) and not by pain ratings alone. Further, previously described sensitizing and desensitizing trends within REDSTIM provide a novel insight into human pain mechanisms overcoming limitations of conventional testing methods. The purpose of the present study was to assess the test-retest reliability of pain intensity clamping using REDSTIM during three separate sessions.
Methods: We used a method for testing changes in pain sensitivity of human subjects (REDSTIM) where the stimulus temperature is modulated to clamp pain intensity near a desired set-point. Temperature serves as the response variable and is used to infer pain sensitivity. Several measures were analyzed for reliability including average temperature and area under the curve (AUC). Intraclass correlation coefficients were calculated for each measure at pain rating set-points of 20/100 and 35/100.
Results: Sixteen healthy individuals (mean age = 21.6 ± 3.9) participated in three experiments two days apart at both pain rating set-points. Most reliability coefficients were in the moderate to substantial range (r's = 0.79 to 0.94) except for the negative AUC (r = 0.52), but only at the 20/100 pain rating set-point.
Conclusions: The present study supports the test-retest reliability of pain intensity clamping using the REDSTIM methodology while providing a novel tool to examine human pain modulatory mechanisms and overcoming common shortcomings of conventional quantitative sensory testing methods.