Counter-regulation afforded by specialized regulatory cell populations and immunosuppressive cytokines is critical for balancing immune outcome. The inhibitory potential of the established suppressive cytokines, IL-10 and TGFβ, has been well elucidated in diverse inflammatory scenarios in conjunction with their key roles in Treg development and function. Despite the early predictions for an immunomodulatory role for the Ebi3/p35 heterodimer in placental trophoblasts, IL-35 biology remained elusive until 2007 when it was established as a Treg-restricted inhibitory cytokine. Since then, Treg-derived IL-35 has been shown to exhibit its suppressive activities in a range of autoimmune diseases and cancer models. Recent studies are beginning to explore other cellular sources of IL-35, such as Bregs and CD8(+) Tregs. Despite these new cellular sources and targets, the mode of IL-35 suppression remains restricted to inhibition of proliferation and induction of an IL-35-producing induced regulatory T cell population referred to as iTr35. In this review, we explore the early beginnings, status quo, and future prospects of IL-35 biology. The unparalleled opportunity of targeting multiple immunosuppressive populations (Tregs, Bregs, CD8(+) Tregs) through IL-35 is highly exciting and offers tremendous promise from a translational standpoint, particularly for cancer immunotherapies.