In vivo imaging of cerebral vasculature is highly vital for clinicians and medical researchers alike. For a number of years non-invasive optical-based imaging of brain vascular network by using standard fluorescence probes has been considered as impossible. In the current paper controverting this paradigm, we present a robust non-invasive optical-based imaging approach that allows visualize major cerebral vessels at the high temporal and spatial resolution. The developed technique is simple to use, utilizes standard fluorescent dyes, inexpensive micro-imaging and computation procedures. The ability to clearly visualize middle cerebral artery and other major vessels of brain vascular network, as well as the measurements of dynamics of blood flow are presented. The developed imaging approach has a great potential in neuroimaging and can significantly expand the capabilities of preclinical functional studies of brain and notably contribute for analysis of cerebral blood circulation in disorder models. An example of 1 × 1.5 cm color-coded image of brain blood vessels of mouse obtained in vivo by transcranial optical vascular imaging (TOVI) approach through the intact cranium.
Keywords: cerebral blood vessels; in vivo fluorescence imaging; middle cerebral artery; non-invasive optical imaging; transcranial; transcranial imaging.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.