Common effluent treatment plants (CETPs) of South Gujarat region, India, process wastewater generated by more than 2500 industries because of the nonfeasibility of processing at the individual industrial unit. This study assessed functional microbial diversity in wastewater samples of CETPs over a geological belt using Ecoplate®, isolation of the most abundant bacteria, and screening for hydrocarbon degradation. The high evenness (EPielou) values (0.9) in almost all samples indicated a highly even community structure. Principal component analysis of carbon source utilization showed a cluster of all inlet samples except E1 and another cluster of all outlet samples; aeration tank community samples were dispersed. In spite of the high richness found in microbial communities, 60 morphologically similar organisms were observed and isolated; 46 out of them were subjected to amplified ribosomal DNA restriction analysis with MboI, HaeIII, and TaqI enzyme, followed by UPGMA clustering. In screening the most abundant bacteria from each cluster, one of the cultures showed a high potential for hydrocarbon degradation and was identified as Pseudomonas citronellolis by 16S rDNA sequencing. Because of its highly adapted inherent nature, this bacterium may help augment the conventional procedure in wastewater treatment and efficiently decrease the organic load.
Keywords: amplified ribosomal DNA restriction analysis; analyse de restriction de l’ADN ribosomal amplifié; analyse des profils physiologiques au niveau de communautés (CLPP); benzoate de sodium; centrales d’épuration des eaux résiduelles (CEER); common effluent treatment plants (CETPs); community-level physiological profile (CLPP) analysis; eaux usées; sodium benzoate; wastewater.