Background: A number of synthetic pantothenate derivatives, such as pantothenamides, are known to inhibit the growth of the human malaria parasite Plasmodium falciparum, by interfering with the parasite Coenzyme A (CoA) biosynthetic pathway. The clinical use of pantothenamides is limited by their sensitivity to breakdown by ubiquitous human pantetheinases of the vanin family.
Methods: A number of pantothenate derivatives (pantothenones) with potent and specific inhibitory activity against mammalian vanins were tested in a proliferation assay of asexual P. falciparum blood stages alone, and in combination with pantothenamides.
Results: The vanin inhibitors were found to protect pantothenamides against breakdown by plasma vanins, thereby preserving the in vitro anti-malarial activity. Moreover, some of the vanin inhibitors showed in vitro anti-malarial activity in the low micromolar range. The most potent antimalarial in this series of compounds (RR8), was found to compete with pantothenate in a combination proliferation assay. No correlation, however, was found between anti-vanin and anti-malarial activity, nor was pantetheinase activity detected in P. falciparum extracts.
Conclusions: Growth inhibition is most likely due to competition with pantothenate, rather than pantetheinase inhibition. As vanin inhibitors of the pantothenone class are stable in biological fluids and are non-toxic to mammalian cells, they may represent novel pantothenate-based anti-malarials, either on their own or in combination with pantothenamides.