Structural and Magnetic Phase Transitions near Optimal Superconductivity in BaFe2(As(1-x)Px)2

Phys Rev Lett. 2015 Apr 17;114(15):157002. doi: 10.1103/PhysRevLett.114.157002. Epub 2015 Apr 17.

Abstract

We use nuclear magnetic resonance (NMR), high-resolution x-ray, and neutron scattering studies to study structural and magnetic phase transitions in phosphorus-doped BaFe2(As(1-x)P(x)2. Previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x=0.3. However, we show that the tetragonal-to-orthorhombic structural (T{s}) and paramagnetic to antiferromagnetic (AF, TN) transitions in BaFe2(As(1-x)Px)2 are always coupled and approach T{N}≈T{s}≥T{c} (≈29 K) for x=0.29 before vanishing abruptly for x≥0.3. These results suggest that AF order in BaFe_{2}(As(1-x)Px)2 disappears in a weakly first-order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.