Identification of isobaric lyso-phosphatidylcholines in lipid extracts of gilthead sea bream (Sparus aurata) fillets by hydrophilic interaction liquid chromatography coupled to high-resolution Fourier-transform mass spectrometry

Anal Bioanal Chem. 2015 Aug;407(21):6391-404. doi: 10.1007/s00216-015-8671-9. Epub 2015 May 3.

Abstract

The numerous and varied biological roles of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) have fueled a great demand for technologies that enable rapid, in-depth structural examination of these lipids in foodstuffs. Here, we describe the capabilities of a newly configured combination of high-efficiency liquid chromatography and high-resolution/accuracy Fourier-transform mass spectrometry with electrospray ionization (LC-ESI-FTMS), designed for lipidomics applications that require the identification of PC in their lyso forms. The devised strategy, involving a separation by hydrophilic interaction liquid chromatography (HILIC) on spherical, fused-core ultrapure silica particles (2.7 μm) of a narrow-bore column (2.1 mm i.d.), enabled the identification of as many as 71 LPC species in the lipid extracts of gilthead sea bream (Sparus aurata) fillets. In this way, LPC as proton (43) and sodium (28) adducts, i.e., [M + H](+) and [M + Na](+) ions (with M representing the zwitterionic form), were identified. In several cases, the extremely high (sub-ppm) mass accuracy and the high chromatographic efficiency available with the adopted instrumentation enabled the distinction of isobaric and closely eluting LPC species. Informative tandem mass spectra, based on high-energy collision induced dissociation (HCD), were also obtained, thus distinguishing regioisomeric LPC species (i.e., LPC differing only for the location of the residual side chain on the glycerol backbone) and between proton and sodium adducts. Graphical Abstract Extracted Ion Current chromatogram (XIC) obtained for the m/z value 568.339, showing the presence of two regioisomeric Lysophosphatidylcholines. The corresponding high collisional energy tandem MS spectra, obtained using a HCD cell, are shown as insets.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chromatography, Liquid / methods*
  • Hydrophobic and Hydrophilic Interactions
  • Lysophosphatidylcholines / chemistry*
  • Mass Spectrometry / methods*
  • Phospholipids / chemistry*
  • Sea Bream
  • Seafood / analysis*
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Lysophosphatidylcholines
  • Phospholipids