Soil contamination by antibiotics is a possible consequence of animal husbandry waste, sewage sludge, and reclaimed water spreading in agriculture. In this study, 1-year-old hazel plants (Corylus avellana L.) were grown in pots for 64 days in soil spiked with sulfadiazine (SDZ) in the range 0.01-100 mg kg(-1) soil. Leaf gas exchanges, fluorescence parameters and plant growth were measured regularly during the experiment, whereas plant biomass, sulfonamide concentrations in soil and plant tissues, and the quantitative variation of culturable bacterial endophytes in leaf petiole were analyzed at the end of the trial. During the experiment, photosynthesis and leaf transpiration as well as fluorescence parameters were progressively reduced by the antibiotic. Effects were more evident for leaf transpiration and for the highest SDZ spiking concentrations, whereas growth analyses did not reveal negative effects of the antibiotic. At the end of the trial, a high number of culturable endophytic bacteria in the leaf petiole of plants treated with 0.1 and 0.01 mg kg(-1) were observed, and SDZ was extractable from soil and plant roots for spiking concentrations ≥1 mg kg(-1). Inside plants, the antibiotic was mainly stored at the root level with bioconcentration factors increasing with the spiking dose, and the hydroxylated derivate 4-OH-SDZ was the only metabolite detected. Overall results show that 1-year-old hazel plants can contribute to the reduction of sulfonamide concentrations in the environment, however, sensitive reactions to SDZ can be expected at the highest contamination levels.