Use of radioactive substances in diagnosis and treatment of neuroendocrine tumors

Scand J Gastroenterol. 2015 Jun;50(6):740-7. doi: 10.3109/00365521.2015.1033454.

Abstract

Radionuclides are needed both for nuclear medicine imaging as well as for peptide-receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NET). Imaging is important in the initial diagnostic work-up and for staging NETs. In therapy planning, somatostatin receptor imaging (SRI) is used when treatment is targeted at the somatostatin receptors as with the use of somatostatin analogues or PRRT. SRI with gamma camera technique using the tracer (111)In-DTPA-octreotide has for many years been the backbone of nuclear imaging of NETs. However, increasingly PET tracers for SRI are now used. (68)Ga-DOTATATE, (68)Ga-DOTATOC and (68)Ga-DOTANOC are the three most often used PET tracers. They perform better than SPECT tracers and should be preferred. FDG-PET is well suited for visualization of most of the somatostatin receptor-negative tumors prognostic in NET patients. Also (11)C-5-HTP, (18)F-DOPA and (123)I-MIBG may be used in NET. However, with FDG-PET and somatostatin receptor PET at hand we see limited necessity of other tracers. PRRT is an important tool in the treatment of advanced NETs causing complete or partial response in 20% and minor response or tumor stabilization in 60% with response duration of up to 3 years. Grade 3-4 kidney or bone marrow toxicity is seen in 1.5% and 9.5%, respectively, but are completely or partly reversible in most patients. (177)Lu-DOTATATE seems to have less toxicity than (90)Y-DOTATOC. However, until now only retrospective, non-randomized studies have been performed and the role of PRRT in treatment of NETs remains to be established.

Keywords: 11C-5-HTP; 123I-MIBG; 131I-MIBG; 177Lu-DOTATATE; 18F-DOPA; 18F-FD6; 64Cu-DOTATATE; 68Ga-DOTANOC; 68Ga-DOTATATE; 68Ga-DOTATOC; 90Y-DOTATOC; FDG; PET imaging; PRRT; SPECT imaging; cancer; molecular imaging; neuroendocrine tumors; peptide receptor radionuclide therapy; somatostatin receptor imaging.

Publication types

  • Review

MeSH terms

  • Disease Management*
  • Humans
  • Multimodal Imaging / methods*
  • Neuroendocrine Tumors / diagnostic imaging*
  • Neuroendocrine Tumors / radiotherapy*
  • Radionuclide Imaging
  • Radiopharmaceuticals*

Substances

  • Radiopharmaceuticals