Increased calcium influx through L-type voltage-gated calcium channels has been implicated in the neuronal dysfunction underlying age-related memory declines. The present study aimed to test the specific role of Cacna1c (which encodes Cav 1.2) in modulating age-related memory dysfunction. Short-term, spatial and contextual/emotional memory was evaluated in young and aged, wild-type as well as mice with one functional copy of Cacna1c (haploinsufficient), using the novel object recognition, Y-maze and passive avoidance tasks, respectively. Hippocampal expression of Cacna1c mRNA was measured by quantitative polymerase chain reaction. Ageing was associated with object recognition and contextual/emotional memory deficits, and a significant increase in hippocampal Cacna1c mRNA expression. Cacna1c haploinsufficiency was associated with decreased Cacna1c mRNA expression in both young and old animals. However, haploinsufficient mice did not manifest an age-related increase in expression of this gene. Behaviourally, Cacna1c haploinsufficiency prevented object recognition deficits during ageing in both male and female mice. A significant correlation between higher Cacna1c levels and decreased object recognition performance was observed in both sexes. Also, a sex-dependent protective role of decreased Cacna1c levels in contextual/emotional memory loss has been observed, specifically in male mice. These data provide evidence for an association between increased hippocampal Cacna1c expression and age-related cognitive decline. Additionally, they indicate an interaction between the Cacna1c gene and sex in the modulation of age-related contextual memory declines.
Keywords: ageing; cognition; hippocampus; memory; mice.
© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.