Genomics experiments are widely acknowledged to produce a huge amount of data to be analysed. The challenge is to extract meaningful biological context for proteins or genes which is currently difficult because of the lack of an integrative workflow that hinders the efficiency and the robustness of data mining performed by biologists working on ruminants. Thus, we designed ProteINSIDE, a free web service (www.proteinside.org) that (I) provides an overview of the biological information stored in public databases or provided by annotations according to the Gene Ontology, (II) predicts proteins that are secreted to search for proteins that mediate signalisation between cells or tissues, and (III) analyses protein-protein interactions to identify proteins contributing to a process or to visualize functional pathways. Using lists of proteins or genes as a unique input, ProteINSIDE is an original all-in-one tool that merges data from these searches to present a fast overview and integrative analysis of genomic and proteomic data from Bovine, Ovine, Caprine, Human, Rat, and Murine species. ProteINSIDE was bench tested with 1000 proteins identifiers from each species by comparison with DAVID, BioMyn, AgBase, PrediSi, and Phobius. Compared to DAVID or BioMyn, identifications and annotations provided by ProteINSIDE were similar from monogastric proteins but more numerous and relevant for ruminants proteins. ProteINSIDE, thanks to SignalP, listed less proteins potentially secreted with a signal peptide than PrediSi and Phobius, in agreement with the low false positive rate of SignalP. In addition ProteINSIDE is the only resource that predicts proteins secreted by cellular processes that do not involve a signal peptide. Lastly, we reported the usefulness of ProteINSIDE to bring new biological hypotheses of research from proteomics data: the biological meaning of the uptake of adiponectin by the foetal muscle and a role for autophagy during ontogenesis of adipose and muscle tissues.