Spectroscopic XPEEM of highly conductive SI-doped GaN wires

Ultramicroscopy. 2015 Dec:159 Pt 3:476-81. doi: 10.1016/j.ultramic.2015.05.007. Epub 2015 May 14.

Abstract

Using soft X-ray photoelectron emission microscopy (XPEEM), complemented by scanning Auger microscopy (SAM) and scanning capacitance microscopy, we have quantitatively studied the incorporation of silicon and band bending at the surface (m-facet) of an individual, highly conductive Si-doped GaN micro-wires (Tchoulfian et al., Applied Physics Letters 102 (12), 2013). Electrically active n-dopants Si atoms in Ga interstitial sites are detected as nitride bonding states in the high-resolution Si2p core level spectra, and represent only a small fraction (<10%) of the overall Si surface concentration measured by SAM. The derived carrier concentration of 2×10(21) at cm(-3) is in reasonable agreement with electrical measurements. A consistent surface band bending of ~1 eV is directly evidenced by surface photo-voltage measurements. Such an approach combining different surface-sensitive microscopies is of interest for studying other heavily doped semiconducting wires.

Publication types

  • Research Support, Non-U.S. Gov't