Ascorbic Acid-Induced Cardiac Differentiation of Murine Pluripotent Stem Cells: Transcriptional Profiling and Effect of a Small Molecule Synergist of Wnt/β-Catenin Signaling Pathway

Cell Physiol Biochem. 2015;36(2):810-30. doi: 10.1159/000430140. Epub 2015 May 22.

Abstract

Background: Reproducible and efficient differentiation of pluripotent stem cells (PSCs) to cardiomyocytes (CMs) is essential for their use in regenerative medicine, drug testing and disease modeling. The aim of this study was to evaluate the effect of some previously reported cardiogenic substances on cardiac differentiation of mouse PSCs.

Methods: Differentiation was performed by embryoid body (EB)-based method using three different murine PSC lines. The differentiation efficiency was monitored by RT-qPCR, immunocytochemistry and flow cytometry, and the effect mechanistically evaluated by transcriptome analysis of treated EBs.

Results: Among the five tested compounds (ascorbic acid, dorsomorphin, cyclic adenosine 3',5'-monophosphate, cardiogenol C, cyclosporin A) only ascorbic acid (AA) exerted a strong and reproducible cardiogenic effect in CGR8 cells which was less consistent in other two PSC lines. AA induced only minor changes in transcriptome of CGR8 cells after administration during the initial two days of differentiation. Cardiospecific genes and transcripts involved in angiogenesis, erythropoiesis and hematopoiesis were up-regulated on day 5 but not on days 2 or 3 of differentiation. The cardiac differentiation efficiency was improved when QS11, a small-molecule synergist of Wnt/β-catenin signaling pathway, was added to cultures after AA-treatment.

Conclusion: This study demonstrates that only minor transcriptional changes are sufficient for enhancement of cardiogenesis of murine PSCs by AA and that AA and QS11 exhibit synergistic effects and enhance the efficiency of CM differentiation of murine PSCs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants / pharmacology*
  • Ascorbic Acid / pharmacology*
  • Cell Differentiation / drug effects*
  • Cell Line
  • Gene Expression Profiling
  • Mice
  • Myocytes, Cardiac / cytology*
  • Myocytes, Cardiac / metabolism
  • Pluripotent Stem Cells / cytology
  • Pluripotent Stem Cells / drug effects*
  • Pluripotent Stem Cells / metabolism
  • Purines / pharmacology
  • Wnt Signaling Pathway / drug effects*
  • beta Catenin / metabolism

Substances

  • Antioxidants
  • Purines
  • QS11 compound
  • beta Catenin
  • Ascorbic Acid