In human hepatocellular carcinoma (HCC), aberrant expression of miRNAs correlates with tumor cell proliferation, apoptosis, invasion, and migration by targeting downstream proteins. miR-15b levels are reported increased in HCC tissues; however, they negatively correlate to HCC recurrence. Our aim was to understand the reason for this phenomenon. We used the reverse transcription-polymerase chain reaction (RT-PCR) to measure miR-15b-5p expression in both HCC tissues and HCC cell lines. Our results were consistent with the report. Using bioinformatics and luciferase reporter assays, we identified Rab1A as a novel and direct target of miR-15b-5p. Inhibiting the function of Rab1A with shRab1A also inhibited the growth of HCC cells and induced endoplasmic reticulum stress (ERS) and apoptosis. Similarly, suppressing Rab1A by overexpression of miR-15b-5p also inhibited cell growth and induced ERS and apoptosis. Moreover, re-expression of Rab1A rescued the miR-15b-5p-induced ERS, apoptosis, and growth inhibition in HCC cells. In vivo assays were further performed to testify them. Taken together, our data suggest that miR-15b-5p induces ERS, apoptosis, and growth inhibition by targeting and suppressing Rab1A, acting as a tumor suppressor gene in HCC. This finding suggests a novel relation among Rabs, miRNAs, and apoptosis.
Keywords: ERS; Rab1A; apoptosis; hepatocellular carcinoma; miR-15b-5p.