Resveratrol offers pleiotropic health benefits including a reported ability to inhibit lipopolysaccharide (LPS)-induced cytokine production. The aim of this work was to prepare, characterize, and evaluate a resveratrol nanoparticulate formulation based on zein. For this purpose, the oral bioavailability of the encapsulated polyphenol as well as its anti-inflammatory effects in a mouse model of endotoxic shock was studied. The resveratrol-loaded nanoparticles displayed a mean size of 307 ± 3 nm, with a negative zeta potential (-51.1 ± 1.55 mV), and a polyphenol loading of 80.2 ± 3.26 μg/mg. In vitro, the release of resveratrol from the nanoparticles was found to be pH independent and adjusted well to the Peppas-Sahlin kinetic model, suggesting a mechanism based on the combination of diffusion and erosion of the nanoparticle matrix. Pharmacokinetic studies demonstrated that zein-based nanoparticles provided high and prolonged plasma levels of the polyphenol for at least 48 h. The oral bioavailability of resveratrol when administered in these nanoparticles increased up to 50% (19.2-fold higher than for the control solution of the polyphenol). Furthermore, nanoparticles administered daily for 7 days at 15 mg/kg were able to diminish the endotoxic symptoms induced in mice by the intraperitoneal administration of LPS (i.e., hypothermia, piloerection, and stillness). In addition, serum tumor necrosis factor-alpha (TNF-α) levels were slightly lower (approximately 15%) than those observed in the control.
Keywords: anti-inflammatory; bioavailability; nanoparticles; resveratrol; zein.