Rationale: Pulmonary hypertension (PH) is characterized by a progressive elevation in mean pulmonary arterial pressure, often leading to right ventricular failure and death. Growth factors play significant roles in the pathogenesis of PH, and their targeting may therefore offer novel therapeutic strategies in this disease.
Objectives: To evaluate the nerve growth factor (NGF) as a potential new target in PH.
Methods: Expression and/or activation of NGF and its receptors were evaluated in rat experimental PH induced by chronic hypoxia or monocrotaline and in human PH (idiopathic or associated with chronic obstructive pulmonary disease). Effects of exogenous NGF were evaluated ex vivo on pulmonary arterial inflammation and contraction, and in vitro on pulmonary vascular cell proliferation, migration, and cytokine secretion. Effects of NGF inhibition were evaluated in vivo with anti-NGF blocking antibodies administered both in rat chronic hypoxia- and monocrotaline-induced PH.
Measurements and main results: Our results show increased expression of NGF and/or increased expression/activation of its receptors in experimental and human PH. Ex vivo/in vitro, we found out that NGF promotes pulmonary vascular cell proliferation and migration, pulmonary arterial hyperreactivity, and secretion of proinflammatory cytokines. In vivo, we demonstrated that anti-NGF blocking antibodies prevent and reverse PH in rats through significant reduction of pulmonary arterial inflammation, hyperreactivity, and remodeling.
Conclusions: This study highlights the critical role of NGF in PH. Because of the recent development of anti-NGF blocking antibodies as a possible new pain treatment, such a therapeutic strategy of NGF inhibition may be of interest in PH.
Keywords: animal disease models; blocking antibodies; pulmonary circulation.