Revival of pure titanium for dynamically loaded porous implants using additive manufacturing

Mater Sci Eng C Mater Biol Appl. 2015 Sep:54:94-100. doi: 10.1016/j.msec.2015.05.001. Epub 2015 May 5.

Abstract

Additive manufacturing techniques are getting more and more established as reliable methods for producing porous metal implants thanks to the almost full geometrical and mechanical control of the designed porous biomaterial. Today, Ti6Al4V ELI is still the most widely used material for porous implants, and none or little interest goes to pure titanium for use in orthopedic or load-bearing implants. Given the special mechanical behavior of cellular structures and the material properties inherent to the additive manufacturing of metals, the aim of this study is to investigate the properties of selective laser melted pure unalloyed titanium porous structures. Therefore, the static and dynamic compressive properties of pure titanium structures are determined and compared to previously reported results for identical structures made from Ti6Al4V ELI and tantalum. The results show that porous Ti6Al4V ELI still remains the strongest material for statically loaded applications, whereas pure titanium has a mechanical behavior similar to tantalum and is the material of choice for cyclically loaded porous implants. These findings are considered to be important for future implant developments since it announces a potential revival of the use of pure titanium for additively manufactured porous implants.

Keywords: Additive manufacturing; Fatigue; Porous biomaterials; Selective laser melting; Titanium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alloys
  • Biocompatible Materials / chemistry
  • Compressive Strength
  • Lasers
  • Materials Testing
  • Porosity
  • Prostheses and Implants*
  • Surface Properties
  • Tantalum / chemistry
  • Titanium / chemistry*
  • Weight-Bearing

Substances

  • Alloys
  • Biocompatible Materials
  • titanium alloy (TiAl6V4)
  • Tantalum
  • Titanium