The Role of Phosphodiesterase 12 (PDE12) as a Negative Regulator of the Innate Immune Response and the Discovery of Antiviral Inhibitors

J Biol Chem. 2015 Aug 7;290(32):19681-96. doi: 10.1074/jbc.M115.653113. Epub 2015 Jun 8.

Abstract

2',5'-Oligoadenylate synthetase (OAS) enzymes and RNase-L constitute a major effector arm of interferon (IFN)-mediated antiviral defense. OAS produces a unique oligonucleotide second messenger, 2',5'-oligoadenylate (2-5A), that binds and activates RNase-L. This pathway is down-regulated by virus- and host-encoded enzymes that degrade 2-5A. Phosphodiesterase 12 (PDE12) was the first cellular 2-5A- degrading enzyme to be purified and described at a molecular level. Inhibition of PDE12 may up-regulate the OAS/RNase-L pathway in response to viral infection resulting in increased resistance to a variety of viral pathogens. We generated a PDE12-null cell line, HeLaΔPDE12, using transcription activator-like effector nuclease-mediated gene inactivation. This cell line has increased 2-5A levels in response to IFN and poly(I-C), a double-stranded RNA mimic compared with the parental cell line. Moreover, HeLaΔPDE12 cells were resistant to viral pathogens, including encephalomyocarditis virus, human rhinovirus, and respiratory syncytial virus. Based on these results, we used DNA-encoded chemical library screening to identify starting points for inhibitor lead optimization. Compounds derived from this effort raise 2-5A levels and exhibit antiviral activity comparable with the effects observed with PDE12 gene inactivation. The crystal structure of PDE12 complexed with an inhibitor was solved providing insights into the structure-activity relationships of inhibitor potency and selectivity.

Keywords: antiviral agent; gene knockout; innate immunity; interferon; protein structure.

MeSH terms

  • 2',5'-Oligoadenylate Synthetase / genetics
  • 2',5'-Oligoadenylate Synthetase / immunology*
  • Adenine Nucleotides / immunology
  • Adenine Nucleotides / metabolism
  • Antiviral Agents / chemical synthesis
  • Antiviral Agents / pharmacology*
  • Crystallography, X-Ray
  • Encephalomyocarditis virus / genetics
  • Encephalomyocarditis virus / metabolism
  • Endoribonucleases / genetics
  • Endoribonucleases / immunology*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Exoribonucleases / antagonists & inhibitors
  • Exoribonucleases / chemistry*
  • Exoribonucleases / genetics
  • Exoribonucleases / immunology
  • Gene Expression Regulation
  • Gene Knockout Techniques
  • HeLa Cells
  • Humans
  • Immunity, Innate*
  • Interferon-alpha / pharmacology
  • Models, Molecular
  • Oligoribonucleotides / immunology
  • Oligoribonucleotides / metabolism
  • Poly I-C / pharmacology
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / immunology
  • Respiratory Syncytial Viruses / genetics
  • Respiratory Syncytial Viruses / metabolism
  • Rhinovirus / genetics
  • Rhinovirus / metabolism
  • Signal Transduction
  • Small Molecule Libraries / chemical synthesis
  • Small Molecule Libraries / pharmacology*
  • Structure-Activity Relationship

Substances

  • Adenine Nucleotides
  • Antiviral Agents
  • Interferon-alpha
  • Oligoribonucleotides
  • Recombinant Proteins
  • Small Molecule Libraries
  • 2',5'-oligoadenylate
  • 2',5'-Oligoadenylate Synthetase
  • Endoribonucleases
  • Exoribonucleases
  • PDE12 protein, human
  • 2-5A-dependent ribonuclease
  • Poly I-C

Associated data

  • PDB/3NGO
  • PDB/4Z0V
  • PDB/4Z2B