Background: Recent ecological studies have suggested that inadequate nurse staffing may contribute to the incidence of adverse events in acute care hospitals. However, longitudinal studies are needed to further examine these associations and to identify the staffing patterns that are of greatest risk. The aims of this study are to determine if (a) nurse staffing levels are associated with an increased risk of adverse events, (b) the risk of adverse events in relationship to nurse staffing levels is modified by the complexity of patient requirements, and (c) optimal nurse staffing levels can be established.
Methods/design: A dynamic cohort of all adult medical, surgical, and intensive care unit patients admitted between 2010 and 2015 to a Canadian academic health center will be followed during the inpatient and 7-day post-discharge period to assess the occurrence and frequency of adverse events in relationship to antecedent nurse staffing levels. Four potentially preventable adverse events will be measured: (a) hospital-acquired pneumonia, (b) ventilator-associated pneumonia, (c) venous thromboembolism, and (d) in-hospital fall. These events were selected for their high incidence, morbidity and mortality rates, and because they are hypothesized to be related to nurse staffing levels. Adverse events will be ascertained from electronic health record data using validated automated detection algorithms. Patient exposure to nurse staffing will be measured on every shift of the hospitalization using electronic payroll records. To examine the association between nurse staffing levels and the risk of adverse events, four Cox proportional hazards regression models will be used (one for each adverse event), while adjusting for patient characteristics and risk factors of adverse event occurrence. To determine if the association between nurse staffing levels and the occurrence of adverse events is modified by the complexity of patient requirements, interaction terms will be included in the regression models, and their significance assessed. To assess for the presence of optimal nurse staffing levels, flexible nonlinear spline functions will be fitted.
Discussion: This study will likely generate evidence-based information that will assist managers in making the most effective use of scarce nursing resources and in identifying staffing patterns that minimize the risk of adverse events.