Functional pseudogenes inhibit the superoxide production

Precis Med. 2015;1(1):e745.

Abstract

We recently discovered a dynamic copy number variation on the NCF1 (neutrophil cytosolic factor 1) pseudogenes in human populations. In this study, we investigated whether these pseudogenes are functional or junk as described before. We sequenced the RNAs transcribed from the genome of this locus, and discovered over 10 splicing isoforms from the NCF1 pseudogenes. We cloned 4 splicing isoforms into expression vectors and introduced them into human vascular endothelial cells by transient transfection. We then used two chemical approaches to measure the superoxide production in the cells with and without these pseudogene overexpression. Our data showed that three pseudogene splicing products remarkably reduced the superoxide production after the GFP (Green fluorescent protein) normalization. We used an anti-HA (Hemagglutinin A) tag antibody to stain the cells and confirmed that the proteins transcribed from the NCF1 pseudogene were exclusively localized in the cytoplasm in the perinuclear area in the transient transfection assays. We further examined the tissue distribution of these splicing isoforms of NCF1 pseudogenes in human tissues by quantitative real-time PCR analysis. Our data showed that although these splicing variants are ubiquitously expressed in non-immune tissues in human, they seem to be under a tight control of transcription regulation and show a non-random distribution pattern across tissues. This study challenges the concept that pseudogenes in human genome are only junks without biological functions. Moreover, it suggests that those pseudogenes in human genome may serve as a natural resource for novel drug discovery.

Keywords: pseudogene.