The study aimed to characterize beta-lactam resistance mechanisms of Enterobacteriaceae isolates recovered from diseased dogs and cats between 2008 and 2010 in a European surveillance program (ComPath I) for the antibiotic susceptibility of bacterial pathogens. A total of 608 non-duplicated Enterobacteriaceae isolates were obtained prior antibiotic treatment from diseased dogs (n=464) and cats (n=144). Among the 608 Enterobacteriaceae isolates, 22 presented a minimal inhibitory concentration against cefotaxime above EUCAST breakpoints of susceptibility. All the 22 isolates remained susceptible to carbapenems. Ten isolates were confirmed as extended-spectrum-beta-lactamase (ESBL) producers by PCR-sequencing of bla coding genes including 9 blaCTX-M (CTX-M-1, 14, 15, 32,…) and 1 blaTEM-52 and 12 were AmpC-producing isolates (10 plasmidic CMY-2 group and 2 isolates overexpressing their chromosomal AmpC). ESBLs and plasmid-mediated AmpC (pAmpC)-producing isolates were mainly recovered from dogs (n=17) suffering from urinary tract infections (n=13) and originated from eight different countries. ESBL-bearing plasmids were mostly associated with IncFII incompatibility groups while CMY-2 was predominantly associated with plasmid of the IncI1 group. ESBL/pAmpC-producing Escherichia coli belonged to phylogroup A (n=5), B2 (n=4), and D (n=5). Multilocus sequence typing analysis revealed that among three CTX-M-15-producing E. coli, two belong to sequence type (ST) 131 and one to ST405. The presence of CTX-M-15 including on IncFII plasmids in E. coli ST131-B2 has also been described in isolates of human origin. This suggests the possibility of exchanges of these isolates from humans to companion animals or vice-versa.