What doesn't kill you might make you stronger: functional basis for variation in body armour

J Anim Ecol. 2015 Sep;84(5):1213-21. doi: 10.1111/1365-2656.12414. Epub 2015 Jul 30.

Abstract

1. Predation has been proposed to be a selective agent in the evolution of morphological antipredator strategies in prey. Among vertebrates, one of the morphological traits that evolved multiple times is body armour, including carapaces, thickened keratinized scales and plates of dermal bone. 2. It has been generally assumed that body armour provides protection against a predatory attack; yet, few explicit tests of the hypothesis exist. Cordylidae, a relatively small family of southern African lizards, show considerable variation in the degree of body armour. Hence, this family provides an opportunity to test the hypothesis that body armour serves as protection against predators. 3. Experiments were conducted to test whether the bite forces of four species of mammalian predators were high enough to penetrate the skins of Karusasaurus polyzonus, Namazonurus peersi, Cordylus cordylus and Cordylus macropholis, as well as those of Ouroborus cataphractus individuals originating from three localities that differed in their predator diversity. Furthermore, histological techniques were used to test whether variation in skin toughness was associated with concomitant changes in the degree of epidermal (i.e. β-keratin) and dermal (i.e. osteoderm) armour. 4. The skin toughness values for four out of five cordylid lizards tested in this study were well below the bite forces of the mammalian predators. In contrast, the thick osteoderms in the dermis of O. cataphractus can withstand bites from several mongoose species. However, the significant variation in body armour that is present between the three populations of O. cataphractus does not seem to be related to predator diversity. 5. It is concluded that body armour can serve as protection against predation in O. cataphractus, but that alternative selection pressures, such as thermoregulation or predation by snakes, presumably underlie variation in defensive morphology in the other cordylid lizards.

Keywords: Cordylidae; antipredator defence; bite force; lizard; mongoose; osteoderm; predation; skin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Food Chain
  • Herpestidae / physiology*
  • Lizards / anatomy & histology*
  • Predatory Behavior*