Drug-eluting microarrays to identify effective chemotherapeutic combinations targeting patient-derived cancer stem cells

Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8732-7. doi: 10.1073/pnas.1505374112. Epub 2015 Jun 29.

Abstract

A new paradigm in oncology establishes a spectrum of tumorigenic potential across the heterogeneous phenotypes within a tumor. The cancer stem cell hypothesis postulates that a minute fraction of cells within a tumor, termed cancer stem cells (CSCs), have a tumor-initiating capacity that propels tumor growth. An application of this discovery is to target this critical cell population using chemotherapy; however, the process of isolating these cells is arduous, and the rarity of CSCs makes it difficult to test potential drug candidates in a robust fashion, particularly for individual patients. To address the challenge of screening drug libraries on patient-derived populations of rare cells, such as CSCs, we have developed a drug-eluting microarray, a miniaturized platform onto which a minimal quantity of cells can adhere and be exposed to unique treatment conditions. Hundreds of drug-loaded polymer islands acting as drug depots colocalized with adherent cells are surrounded by a nonfouling background, creating isolated culture environments on a solid substrate. Significant results can be obtained by testing <6% of the cells required for a typical 96-well plate. Reliability was demonstrated by an average coefficient of variation of 14% between all of the microarrays and 13% between identical conditions within a single microarray. Using the drug-eluting array, colorectal CSCs isolated from two patients exhibited unique responses to drug combinations when cultured on the drug-eluting microarray, highlighting the potential as a prognostic tool to identify personalized chemotherapeutic regimens targeting CSCs.

Keywords: cancer stem cell; chemopredictive; combination therapy; microarray; personalized medicine.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aged
  • Antineoplastic Combined Chemotherapy Protocols / administration & dosage
  • Antineoplastic Combined Chemotherapy Protocols / pharmacology*
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use
  • Colorectal Neoplasms / drug therapy*
  • Colorectal Neoplasms / pathology
  • Drug Delivery Systems*
  • Humans
  • Middle Aged
  • Neoplastic Stem Cells / drug effects*
  • Tumor Cells, Cultured