Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy

Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8720-5. doi: 10.1073/pnas.1502281112. Epub 2015 Jun 29.

Abstract

Gene therapy has emerged as an alternative for the treatment of diseases refractory to conventional therapeutics. Synthetic nanoparticle-based gene delivery systems offer highly tunable platforms for the delivery of therapeutic genes. However, the inability to achieve sustained, high-level transgene expression in vivo presents a significant hurdle. The respiratory system, although readily accessible, remains a challenging target, as effective gene therapy mandates colloidal stability in physiological fluids and the ability to overcome biological barriers found in the lung. We formulated highly stable DNA nanoparticles based on state-of-the-art biodegradable polymers, poly(β-amino esters) (PBAEs), possessing a dense corona of polyethylene glycol. We found that these nanoparticles efficiently penetrated the nanoporous and highly adhesive human mucus gel layer that constitutes a primary barrier to reaching the underlying epithelium. We also discovered that these PBAE-based mucus-penetrating DNA nanoparticles (PBAE-MPPs) provided uniform and high-level transgene expression throughout the mouse lungs, superior to several gold standard gene delivery systems. PBAE-MPPs achieved robust transgene expression over at least 4 mo following a single administration, and their transfection efficiency was not attenuated by repeated administrations, underscoring their clinical relevance. Importantly, PBAE-MPPs demonstrated a favorable safety profile with no signs of toxicity following intratracheal administration.

Keywords: biodegradable polymer; lung gene therapy; mucus-penetrating particles; nanotechnology; nonviral gene delivery.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Inhalation
  • Animals
  • Cystic Fibrosis / therapy*
  • DNA / therapeutic use*
  • Genetic Therapy*
  • Mice
  • Mucus*
  • Nanoparticles / therapeutic use*

Substances

  • DNA