Sodium-glucose cotransport

Curr Opin Nephrol Hypertens. 2015 Sep;24(5):463-9. doi: 10.1097/MNH.0000000000000152.

Abstract

Purpose of review: Sodium-glucose cotransporters (SGLTs) are important mediators of glucose uptake across apical cell membranes. SGLT1 mediates almost all sodium-dependent glucose uptake in the small intestine, while in the kidney SGLT2, and to a lesser extent SGLT1, account for more than 90% and nearly 3%, respectively, of glucose reabsorption from the glomerular ultrafiltrate. Although the recent availability of SGLT2 inhibitors for the treatment of diabetes mellitus has increased the number of clinical studies, this review has a focus on mechanisms contributing to the cellular regulation of SGLTs.

Recent findings: Studies have focused on the regulation of SGLT expression under different physiological/pathophysiological conditions, for example diet, age or diabetes mellitus. Several studies provide evidence of SGLT regulation via cyclic adenosine monophosphate/protein kinase A, protein kinase C, glucagon-like peptide 2, insulin, leptin, signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, mitogen-activated protein kinases (MAPKs), nuclear factor-kappaB (NF-kappaB), with-no-K[Lys] kinases/STE20/SPS1-related proline/alanine-rich kinase (Wnk/SPAK) and regulatory solute carrier protein 1 (RS1) pathways.

Summary: SGLT inhibitors are important drugs for glycemic control in diabetes mellitus. Although the contribution of SGLT1 for absorption of glucose from the intestine as well as SGLT2/SGLT1 for renal glucose reabsorption has been comprehensively defined, this review provides an up-to-date outline for the mechanistic regulation of SGLT1/SGLT2.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Blood Glucose / metabolism*
  • Glucose / metabolism*
  • Humans
  • Hypoglycemic Agents / therapeutic use*
  • Kidney / metabolism
  • Sodium / metabolism*
  • Sodium-Glucose Transport Proteins / metabolism*

Substances

  • Blood Glucose
  • Hypoglycemic Agents
  • Sodium-Glucose Transport Proteins
  • Sodium
  • Glucose