High-level, erythroid-specific expression of the human alpha-globin gene in transgenic mice and the production of human hemoglobin in murine erythrocytes

Genes Dev. 1989 Oct;3(10):1572-81. doi: 10.1101/gad.3.10.1572.

Abstract

Using the dominant control region (DCR) sequences that flank the beta-globin gene locus, we have been able to achieve high-level expression of the human alpha-globin gene in transgenic mice. Expression in fetal liver and blood is copy number dependent and at levels comparable to that of the endogenous mouse alpha-globin genes. Transgenic fetuses with high-copy numbers of the transgene suffer severe anemia and die before birth. Using a construct with both the human alpha- and beta-globin genes and the beta-globin DCR, live mice with low-copy numbers were obtained. Both human globin genes are expressed at high levels in adult red cells to give human hemoglobin HbA in amounts equal to or greater than endogenous mouse hemoglobin. Expression of HbA in murine red cells is not accompanied by any increase in mean corpuscular volume (MCV) or mean corpuscular hemoglobin concentration (MCHC). However, these transgenic mice tend to have an increased number of reticulocytes in peripheral blood; consistent with some degree of hemolysis. Metabolic labeling experiments showed balanced mouse globin synthesis, but imbalanced human globin synthesis, with an alpha/beta biosynthetic ratio of approximately 0.6. Thus, these mice have mild anemia. These results are discussed with relation to the coordinate regulation of alpha- and beta-globin synthesis in erythroid tissues.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Southern
  • Erythrocytes / metabolism
  • Gene Expression*
  • Globins / biosynthesis
  • Globins / genetics*
  • Hemoglobin A / biosynthesis
  • Hemoglobin A / genetics*
  • Hemoglobinopathies / genetics
  • Humans
  • In Vitro Techniques
  • Isoelectric Focusing
  • Mice
  • Mice, Transgenic

Substances

  • Globins
  • Hemoglobin A