Live attenuated influenza vaccines (LAIV) can prevent influenza illness and death in children. The absence of known correlates of protection induced by LAIV requires human studies of underlying mechanisms of vaccine-induced immunity, to further elucidate the immunological processes occurring. In this study, children scheduled for elective tonsillectomy were enrolled in a clinical trial to evaluate the immune response to LAIV, in order to compare T and B cell gene expression profiles. Twenty-three children (aged 3-17 years) were divided into 4 groups; unvaccinated controls, or vaccinated intranasally with LAIV at days 3-4, 6-7, and 12-15 before tonsillectomy. Total RNA extraction was performed on tonsillar tissue and high RNA quality was assured. The samples were then analyzed using a validated RT2 Profiler PCR Array containing 84 gene-specific primers involved in B and T cell activation, proliferation, differentiation, regulation and polarization. The gene expression after LAIV vaccination was subsequently compared to the controls. We observed that at d 3-4 post vaccination, 6 genes were down-regulated, namely APC, CD3G, FASLG, IL7, CD8A and TLR1. Meanwhile at 6-7 days post vaccination, 9 genes were significantly up-regulated, including RIPK2, TGFB1, MICB, SOCS1, IL2RA, MS4A1, PTPRC, IL2 and IL8. By days 12-15 the genes RIPK2, IL4, IL12B and TLR2 were overexpressed. RIPK2 was upregulated at all 3 time points. Our data suggests an overall proliferation, differentiation and regulation of B and T cells in the tonsils following LAIV, where the majority of genes were up-regulated at days 6-7 and normalized by days 12-15. These findings may provide a first step into defining future biomarkers or correlates of protection after LAIV immunization.
Keywords: ASC, Antibody secreting cells; B cells; HI, haemagglutination inhibition; LAIV, Live Attenuated Influenza Virus; T cells; TIV, Trivalent Influenza Vaccine; WHO, World Health Organization; gene expression; influenza virus; live attenuated influenza vaccines (LAIV); tonsils.